Definitions: Tautological entailment and FDE

Philosophical Logic 2025/2026

1 Tautological entailment

Definition 1.1 (Literals and primitive formulas). *Let* Var *be a set of propositional variables*

- 1. A literal is either a propositional variable $p \in Var$ or its negation $\neg p$
- 2. A primitive conjunction is a finite non-empty conjunction of literals, i.e. any formula of the form

$$\ell_1 \wedge \cdots \wedge \ell_n$$

with $n \ge 1$ and each ℓ_i a literal

3. A primitive disjunction is a finite non-empty disjunction of literals, i.e. any formula of the form

$$\ell_1 \vee \cdots \vee \ell_n$$

with $n \ge 1$ and each ℓ_i a literal

Definition 1.2 (Elementary tautological entailment). Let ϕ and ψ be formulas. We say that ϕ elementarily tautologically entails ψ and write $\phi \models_{ET} \psi$ if the following two conditions hold

- 1. ϕ is a primitive conjunction and ψ is a primitive disjunction
- 2. some literal occurs both in ϕ and in ψ

Definition 1.3 (Tautological entailment). Let ϕ and ψ be arbitrary formulas. We say that ϕ tautologically entails ψ and write $\phi \models_T \psi$ if the following holds

1. ϕ can be rewritten into a logically equivalent formula in disjunctive normal form

$$\phi_1 \vee \cdots \vee \phi_n$$

where each ϕ_i is a primitive conjunction

2. ψ can be rewritten into a logically equivalent formula in conjunctive normal form

$$\psi_1 \wedge \cdots \wedge \psi_m$$

where each ψ_i is a primitive disjunction

3. for every $i \in \{1, ..., n\}$ and every $j \in \{1, ..., m\}$ we have $\phi_i \models_{ET} \psi_j$ **Definition 1.4** (Normal Form Conversion). Let ϕ, ψ, χ be arbitrary formulas. In order to convert formulas into disjunctive normal form and conjunctive normal form for step 1 and step 2 of Definition 1.3, one can use the following standard equivalence schemata.

Commutation

$$\begin{array}{cccc} \phi \wedge \psi & \Longleftrightarrow & \psi \wedge \phi \\ \phi \vee \psi & \Longleftrightarrow & \psi \vee \phi \end{array}$$

Association

$$(\phi \land \psi) \land \chi \iff \phi \land (\psi \land \chi)$$

$$(\phi \lor \psi) \lor \chi \iff \phi \lor (\psi \lor \chi)$$

Distribution

$$\phi \wedge (\psi \vee \chi) \iff (\phi \wedge \psi) \vee (\phi \wedge \chi)
\phi \vee (\psi \wedge \chi) \iff (\phi \vee \psi) \wedge (\phi \vee \chi)$$

Double negation

$$\neg \neg \phi \iff \phi$$

De Morgan's laws

$$\neg(\phi \land \psi) \iff \neg\phi \lor \neg\psi$$
$$\neg(\phi \lor \psi) \iff \neg\phi \land \neg\psi$$

2 Axiomatic First Degree Entailment

Definition 2.1 (Axiomatic system for \vdash_T). The relation \vdash_T of derivability in the logic of tautological entailment is the smallest relation on formulas that contains the following axioms and is closed under the following rules

Axioms

Conjunction

$$\phi \wedge \psi \vdash_T \phi$$
$$\phi \wedge \psi \vdash_T \psi$$

Disjunction

$$\phi \vdash_T \phi \lor \psi$$
$$\psi \vdash_T \phi \lor \psi$$

Distribution

$$\phi \wedge (\psi \vee \chi) \vdash_T (\phi \wedge \psi) \vee \chi$$

Negation (double negation)

$$\phi \vdash_T \neg \neg \phi$$
$$\neg \neg \phi \vdash_T \phi$$

Rules of inference

Transitivity From $\phi \vdash_T \psi$ and $\psi \vdash_T \chi$ infer $\phi \vdash_T \chi$

Conjunction *From* $\phi \vdash_T \psi$ *and* $\phi \vdash_T \chi$ *infer* $\phi \vdash_T \psi \land \chi$

Disjunction From $\phi \vdash_T \chi$ and $\psi \vdash_T \chi$ infer $\phi \lor \psi \vdash_T \chi$

Negation (contraposition) *From* $\phi \vdash_T \psi$ *infer* $\neg \psi \vdash_T \neg \phi$

3 Four-valued semantics (FDE)

Definition 3.1 (Truth values). *The four truth values of FDE are the four subsets of* $\{1,0\}$

$$\{\{1\},\{0\},\emptyset,\{1,0\}\}$$

 $\{1\}$ represents being true only, $\{0\}$ being false only, \emptyset being neither true nor false, and $\{1,0\}$ being both true and false

Definition 3.2 (FDE-valuations). An FDE-valuation is a function v that assigns to each propositional variable a value in $\{\{1\},\{0\},\emptyset,\{1,0\}\}\}$ and is extended inductively to all formulas as follows

$$1 \in v(\neg \phi) \text{ iff } 0 \in v(\phi)$$

$$0 \in v(\neg \phi) \text{ iff } 1 \in v(\phi)$$

$$1 \in v(\phi \land \psi) \text{ iff } 1 \in v(\phi) \text{ and } 1 \in v(\psi)$$

$$0 \in v(\phi \land \psi) \text{ iff } 0 \in v(\phi) \text{ or } 0 \in v(\psi)$$

$$1 \in v(\phi \lor \psi) \text{ iff } 1 \in v(\phi) \text{ or } 1 \in v(\psi)$$

$$0 \in v(\phi \lor \psi) \text{ iff } 0 \in v(\phi) \text{ and } 0 \in v(\psi)$$

Definition 3.3 (Four-valued semantic consequence). Let ϕ and ψ be formulas. We say that ϕ FDE-semantically entails ψ and write $\phi \models_{FDE} \psi$ if for every FDE-valuation v the following two conditions hold

- 1. if $1 \in v(\phi)$, then $1 \in v(\psi)$
- 2. if $0 \in v(\psi)$, then $0 \in v(\phi)$